
International

SCHOTTKY RECTIFIER

50WQ03FN

5.5 Amp

Major Matings and onaracteristics				
Characteristics	Values	Units		
I _{F(AV)} Rectangular waveform	5.5	A		
V _{RRM}	30	V		
I_{FSM} @tp=5µssine	320	Α		
V _F @5Apk,T _J =125°C	0.35	V		
T _J range	-40 to 150	°C		

Major Ratings and Characteristics

Description/ Features

The 50WQ03FN surface mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Popular D-PAK outline
- Small foot print, surface moutable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Document Number: 93358

www.vishay.com 1

50WQ03FN

Bulletin PD-20551 rev. G 05/06

International **IOR** Rectifier

Voltage Ratings

Part number	50WQ03FN
V _R Max. DC Reverse Voltage (V)	22
V _{RWM} Max. Working Peak Reverse Voltage (V)	30

Absolute Maximum Ratings

	Parameters	50WQ	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	5.5	Α	50% duty cycle @ T_c = 136°C, rectangular wave form	
	* See Fig. 5				
I _{FSM}	Max. Peak One Cycle Non-Repetitive	320	Α	5µs Sine or 3µs Rect. pulse	Following any rated load condition and with
	Surge Current * See Fig. 7	130		10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	10	mJ	T _J = 25 °C, I _{AS} = 2.0 Amps, L = 5 mH	
IAR	Repetitive Avalanche Current	2.0	Α	Current decaying linearly to zero in 1 µsec	
				Frequency limited by $T_J max. V_A$	_λ =1.5 x V _R typical

Electrical Specifications

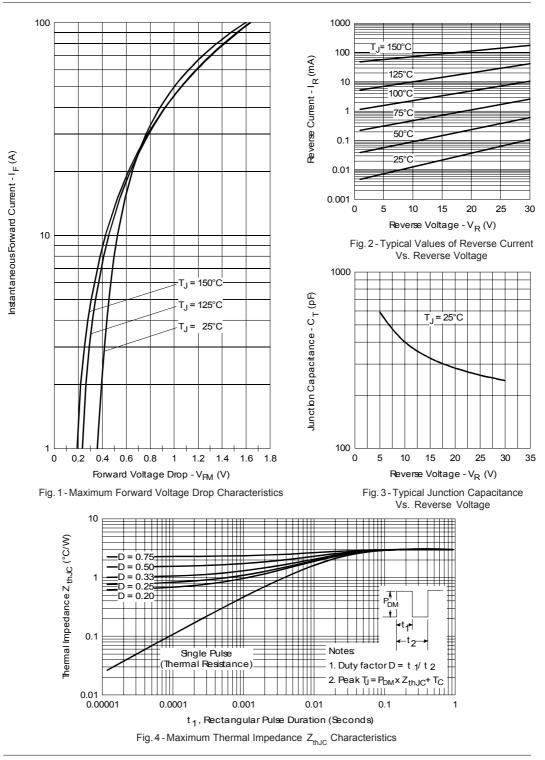
Parameters		50WQ	Units	Conditions		
V _{FM}	Max. Forward Voltage	e Drop	0.46	V	@ 5A	T = 25 °C
	* See Fig. 1	(1)	0.53	V	@ 10A	T _J = 25 °C
			0.35	V	@ 5A	T = 125 °C
			0.46	V	@ 10A	1 _J 120 0
I _{RM}	Max. Reverse Leakag	ge Current	3	mA	T _J = 25 °C	V_{p} = rated V_{p}
	* See Fig. 2	(1)	58	mA	T _J = 125 °C	
V _{F(TO}	Threshold Voltage		0.19	V	$T_J = T_J max.$	
r _t	Forward Slope Resist	tance	22.22	mΩ	-	
C _T	Typical Junction Capa	acitance	590	pF	V_R = 5 V_{DC} (test signal range 100Khz to 1Mhz) 25 °C	
L _S	Typical Series Inducta	ance	5.0	nH	Measured lead to lead 5mm from package body	

(1) Pulse Width < 300 μ s, Duty Cycle < 2%

Thermal-Mechanical Specifications

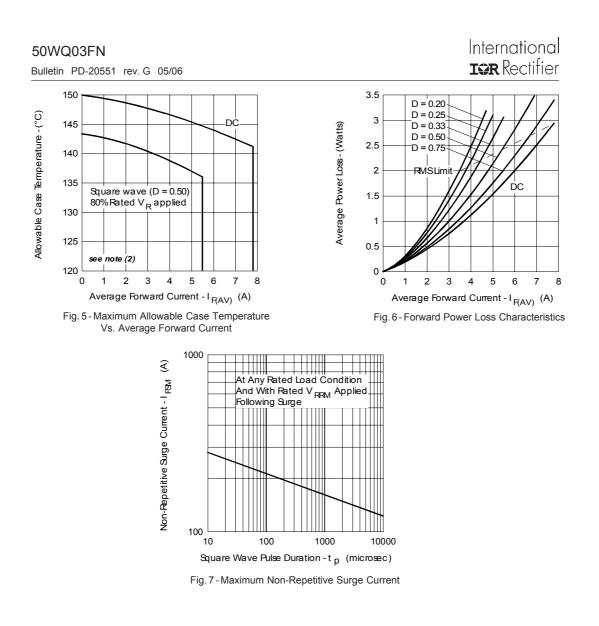
	Parameters	50W	Units	Conditions
TJ	Max. Junction Temperature Range (*)	-40 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-40 to 150	°C	
R _{thJC}	Max. Thermal Resistance Junction	3.0	°C/W	DC operation * See Fig. 4
	to Case			
wt	Approximate Weight	0.3 (0.01)	g(oz.)	
	Case Style	D-PAK		Similar to TO-252AA
	Marking Device	50WQ03FN		

(*) dPtot

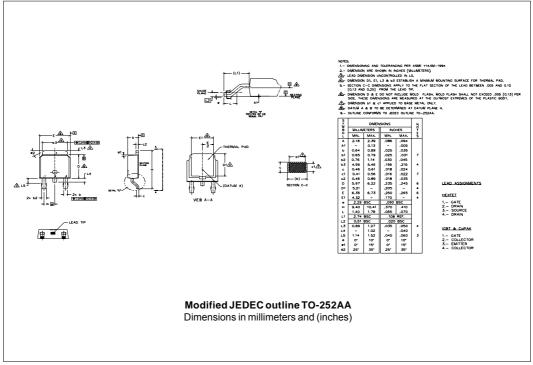

1 thermal runaway condition for a diode on its own heatsink dTj Rth(j-a)

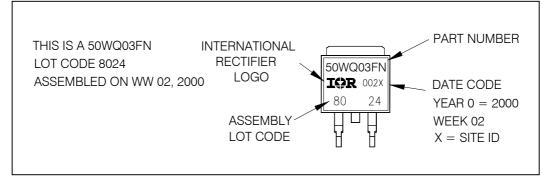
Document Number: 93358

International


50WQ03FN

Document Number: 93358


www.vishay.com 3


(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1-D)$; $I_R @ V_{R1} = 80\%$ rated V_R

www.vishay.com 4

Outline Table

Part Marking Information

TR 1.5 FEED DIRECTION 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.35 (0.01) \\ 0.25 (0.01) \\ \hline 7.0 (0.28) \\ 6.8 (0.26) \\ \hline 2.75 (0.11) \\ 2.55 (0.10) \\ \hline \end{array}$
3.9 2.1 TRR 1.9 FEED DIRECTION 8	$\begin{array}{c} (0.16) \\ (0.15) \\ (0.83) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.07) \\ (0.06$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TRL 1.9 FEED DIRECTION 8	$\begin{array}{c} (0.16) \\ \hline (0.15) \\ \hline (0.83) \\ \hline (0.07) \\ \hline (0.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
375 (14.17) DIA. MAX.		TO-252AA Tape & Reel When ordering, indicate the part number, part orientation, and the quantity. Quantities are in multiples of 2,000 pieces per reel for TR and multiples of 3,000 pieces per reel for both TRL and TRR.

Tape & Reel Information

Bulletin PD-20551 rev. G 05/06

Device Code	50 W Q 03 FN TRL - 1 2 3 4 5 6 7
	 Current Rating (5.5A) Package Identifier W = D-Pak Schottky "Q" Series Voltage Rating (03 = 30V) FN = TO-252AA • none = Tube (50 pieces) • TR = Tape & Reel • TRL = Tape & Reel (Left Oriented) • TRR = Tape & Reel (Right Oriented) • TRR = Tape & Reel (Right Oriented) • PbF = Lead-Free

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for AEC Q101 Level. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 05/06

> www.vishay.com 7

Document Number: 93358

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.